Algal signalling and physiology

Marine phytoplankton must constantly sense and respond to their dynamic environment in order to survive

We are interested in the cellular mechanisms in marine phytoplankton that underpin and drive global biogeochemical cycles.

Using a combination of genomic and physiological techniques, we study how algae sense and respond to their environment.

Much of our research uses single cell microscopy approaches to directly visualise signalling processes. Some examples are shown below.

Coccolithophores are abundant bloom-forming phytoplankton that play an important role in the global carbon cycle due to their ability to produce calcium carbonate plates, known as coccoliths. Changes in the chemistry of our oceans caused by increased atmospheric CO2 may have a significant impact on coccolithophore calcification. In order to help predict how coccolithophores will respond to these rapid changes in their environment, we are examining how calcification is regulated at the cellular level and how these mechanisms may respond to environmental change.

We have recently made the surprising discovery that some coccolithophores require silicon in order to produce their coccoliths (Durak et al 2016). These species possess silicon transporters that are related to those found in extensively silicified phytoplankton, such as the diatoms. This finding has important implications for our understanding of the evolution of calcification and silicification by marine organisms. The absence of a requirement for silicon in bloom-forming coccolithophore species, such as Emiliania huxleyi, may have enhanced their ability to compete with the heavily silicified diatoms.

Assessing how cell size constrains carbon uptake in diatoms using direct measurements of cell surface carbonate chemistry

Marine diatoms are major contributors to global primary productivity and one of the most abundant photosynthetic organisms on our planet, but much remains to be learnt about the mechanisms through which they acquire carbon from seawater. In particular, the role of the diffusive boundary layer...

Continuing Genetic Tool Development in Marine Protists to Advance Nascent Experimental Model Systems : Development of gene editing technologies within the haptophyte algae

This project aims to develop molecular genetic tools in the haptophyte algae. Strains will be selected that exhibit rapid and robust growth in laboratory culture as candidate model organism for the development of genetic tools within the haptophytes. Our approach will be to...

Coccolithophore calcification: An unexpected requirement for silicon

Coccolithophores are well known for their ability to produce intricate protective scales composed of crystalline calcium carbonate (calcite). A collaborative project led by Dr. Glen Wheeler (MBA) is studying the unexpected finding that certain species of coccolithophores require silicon in order...

The role of ciliary calcium signalling in the regulation of intraflagellar transport

Cell biologists are becoming increasingly aware that cilia and flagella are important sensory organelles, which detect changes in the extracellular environment and convey these signals to the cell body. The biflagellate green alga, Chlamydomonas, is a model organism for the study of flagella...

Staff List

Glen Wheeler
Senior Research Fellow
Glen is a molecular cell biologist studying the physiology of marine phytoplankton and other algae.
Email: Telephone Number:
+44 (0)1752 426586
Abdesslam Chrachri
Postdoctoral Research Fellow

Abdul re-joined the MBA in 2007 and is working in various projects focusing on the cell biology of diatoms and coccolithophores, two of the most significant groups of phytoplankton with respect to ocean primary productivity

Email: Telephone Number:
+44(0)1752 426541
Susan Wharam
Research Assistant

Susie Wharam is a Molecular Biology Technician, within the Cellular and Molecular group.

Email: Telephone Number:
+44(0)1752 426541
Andrea Highfield
Postdoctoral Researcher

Andrea is a postdoctoral researcher working within the Cellular and Molecular group at the MBA.

Email: Telephone Number:
+44(0)1742 968638
Daniela Sturm
PhD Student
Daniela is a PhD student, under the guidance of Dr Glen Wheeler (MBA), Professor Colin Brownlee (MBA), and Professor Toby Tyrell (University of Southampton).
Email: Telephone Number:
+44(0)1752 968707
Joost deVries
PhD Student
Email: Telephone Number:
+44(0)1752 968707
Matthew Keys
Postdoctoral Research Assistant

Email: Telephone Number:
+44 (0)1752 968708
Isobel Cole
PhD Student
Email: Telephone Number:
+44 (0)1752 426543
Ellie Murphy
PhD Student
Email: Telephone Number:
+44 0(1752) 426543
Trupti Gaikwad
Research Technician

Trupti has over five years of experience studying the molecular basis of plant-microbe interactions (mainly on Arabidopsis thaliana and Pseudomonas syringae pathosystem).

Email: Telephone Number:
+44(0)1752 968707

  • Fort C, Collingridge P, Brownlee C, Wheeler GL. (2021) Ca2+ elevations disrupt interactions between intraflagellar transport and the flagella membrane in Chlamydomonas. J Cell Sci. 2021 Feb 11;134(3):jcs253492. doi: 10.1242/jcs.253492.

  • Langer G, Taylor AR, Walker CE, Meyer EM, Ben Joseph O, Gal A, Harper GM, Probert I, Brownlee C, Wheeler GL. (2021) Role of silicon in the development of complex crystal shapes in coccolithophores. New Phytol. 2021 Jan 23. doi: 10.1111/nph.17230.

  • Healthy herds in the phytoplankton: the benefit of selective parasitism. (2021) Laundon D, Mock T, Wheeler GL, Cunliffe M. ISME J. 2021 Mar 4. doi: 10.1038/s41396-021-00936-8.

  • Helliwell KE, Kleiner F., Hardstaff H., Chrachri A., Salmon D., Smirnoff N., Wheeler GL, and Brownlee C. (2021). Spatiotemporal patterns of intracellular Ca2+ signalling govern hypo-osmotic stress resilience in marine diatoms. New PhytologistIn press,

  • Helliwell KE, Harrison E., Christie-Oleza J, Downe J, Rees A, Al-Moosawi L, Brownlee C., Wheeler GL. (2021) A novel Ca2+ signalling pathway co-ordinates environmental phosphorus sensing and nitrogen metabolism in marine diatoms. Current Biology, 31: 1-12,

  • Helliwell KE, Chrachri A, Koester J, Wharam S, Taylor A, Wheeler GL, Brownlee C. (2020). A novel single-domain Na+-selective voltage-gated channel in photosynthetic eukaryotes. Plant Physiol. p.00889.2020.

  • Meyer EM, Langer G, Brownlee C, Wheeler GL, Taylor AR (2020). Sr in coccoliths of Scyphosphaera apsteinii: Partitioning behavior and role in coccolith morphogenesis. Geochimica et Cosmochimica Acta 285, 41-54

  • Brownlee C, Langer G, Wheeler GL (2020). Coccolithophore calcification: Changing paradigms in changing oceans. Acta Biomaterialia S1742-7061(20)30436-0.

  • de Vries J, Monteiro F, Wheeler G, Poulton A, Godrijan J, Cerino, F,  et al (2020). The haplo-diplontic life cycle expands niche space of coccolithophores. Biogeosciences Discussions, 1-39.

  • Laundon D, Chrismas N, Wheeler GL, Cunliffe M (2020). Chytrid rhizoid morphogenesis resembles hyphal development in multicellular fungi and is adaptive to resource availability. Proc Roy Soc B 287 (1928), 20200433.

  • Faktorová D, Nisbet RER, Robledo JAF, Casacuberta E, Sudek L, ..Wheeler GL…et al (2020). Genetic tool development in marine protists: Emerging model organisms for experimental cell biology. Nature Methods 17 (5), 481-494.

  • McCoy SJ, Santillán‐Sarmiento A, Brown MT, Widdicombe S, Wheeler GL (2020). Photosynthetic Responses of Turf‐forming Red Macroalgae to High CO2 Conditions. J Phycol 56 (1), 85-96.


  • Helliwell KE, Chrachri A, Koester J, Wharam S, Verret F, Taylor AR, Wheeler GL, and Brownlee C. (2019). Alternative mechanisms for fast Na+/Ca2+ signalling in eukaryotes via a novel class of single-domain voltage-gated channels. Current Biology. 29 (9), 1503-1511.

  • Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, Wheeler, GL, & Smith AG. (2018). Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae.  ISME J.

  • Walker CE, Heath S, Salmon DL, Smirnoff N, Langer G, Taylor AR, Brownlee C, Wheeler GL (2018). An Extracellular Polysaccharide-Rich Organic Layer Contributes to Organization of the Coccosphere in Coccolithophores. Front. Mar. Sci.,

  • Walker CE, Taylor AR, Langer G, Durak GM, Heath S, Probert I, Tyrrell T, Brownlee C, Wheeler GL (2018). The requirement for calcification differs between ecologically important coccolithophore species. New Phytol. doi: 10.1111/nph.15272.

  • Wheeler, G; Helliwell, KE; Brownlee, C (2018). Calcium signalling in algae. Perspectives in Phycology. doi: 10.1127/pip/2018/0082.

  • Chrachri A, Hopkinson BM, Flynn K, Brownlee C, Wheeler GL (2018) Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells. Nature Commun. 9:74

  • Durak GM, Brownlee C, Wheeler GL. (2017) The role of the cytoskeleton in biomineralisation in haptophyte algae. Sci. Reports. 7, 15409.

  • Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, et al. (2017). Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). PNAS. 114 (31):E6361–E6370.

  • Taylor AR, Brownlee C, Wheeler G (2017) Coccolithophore cell biology: chalking up progress. Ann Rev Mar Sci. 9:18.1–18.28.​

  • Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, de Vargas C, Richter DJ. (2016). The evolution of silicon transport in eukaryotes. Mol Biol Evol. 33(12):3226-3248.

  • Bickerton P, Sello S, Brownlee C, Pittman JK, Wheeler GL. (2016). Spatial and temporal specificity of Ca2+ signalling in Chlamydomonas reinhardtii in response to osmotic stress. New Phytol. 2016. doi: 10.1111/nph.14128.

  • Flynn KJ, Clark DR, Wheeler G. (2016). The role of coccolithophore calcification in bioengineering their environment. Proc Biol Sci. 283(1833). pii: 20161099.

  • Durak GM, Taylor AR, Walker CE, Probert I, de Vargas C, Audic S, Schroeder D, Brownlee C, Wheeler GL. (2016). A role for diatom-like silicon transporters in calcifying coccolithophores. Nature Commun. 7:10543.

  • Brownlee C, Wheeler GL, Taylor AR. (2015) Coccolithophore biomineralization: New questions, new answers. Semin Cell Dev Biol. 46:11-6.

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N. (2015). Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife 4:e06369.

  • Flynn KJ, Clark DR, Mitra A, Fabian H, Hansen PJ, Glibert PM, Wheeler GL, Stoecker DK, Blackford JC, Brownlee C. (2015). Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proc Biol Sci. 282(1804):20142604.

  • Helliwell K. E., Collins S. Kazamia E. Purton S. Wheeler G. L. and Smith A.G. (2014). Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. The ISME Journal. 9(6):1446-55.

  • Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, …Wheeler G… et al. (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology 12(6): e1001889

  • Collingridge P, Brownlee C, Wheeler GL. (2013) Compartmentalised calcium signalling in cilia regulates intraflagellar transport. Current Biology 23(22):2311-8

  • Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G; Emiliania huxleyi Annotation Consortium, Dacks JB, Delwiche CF, Dyhrman ST, Glöckner G, John U, Richards T, Worden AZ, Zhang X, Grigoriev IV. (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature. 499(7457), 209-13.

  • Helliwell KE, Wheeler GL, Smith AG. (2013). Widespread decay of vitamin-related pathways: coincidence or consequence?  Trends Genetics. 29(8):469-78.

  • Bach LT, Mackinder L, Schulz K, Wheeler GL, Schroeder DC, Brownlee C, Riebesell U. (2013) Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyiNew Phytologist. 199(1):121-34.

  • Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR, Beardall J, Brownlee C, Fabian H, Wheeler GL. (2012) Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change. 2, 510-513

  • Chan CX, Zäuner S, Wheeler G, Grossman AR, Prochnik SE, Blouin NA, Zhuang Y, Benning C, Berg GM, Yarish C, Eriksen RL, Klein AS, Lin S, Levine I, Brawley SH, Bhattacharya D (2012). Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol. 158(4):2001-12.

  • Taylor AR, Brownlee C, Wheeler GL. (2012). Proton channels in algae: reasons to be excited. Trends Plant Sci. 17(11):675-84.

  • Crawfurd KJ, Raven J, Wheeler GL, Baxter E, Joint I (2011). The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PLOS One. 6(10):e26695

  • Mackinder L, Wheeler GL, Schroeder DS, Von Dassow P, Riebesell U, Brownlee C. (2013) Expression of biomineralisation related ion transport genes in Emiliania huxleyiEnv Microbiol. 13(12):3250-65.

  • Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE and Smith AG. (2011) Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes. Mol Biol Evol. 28(10):2921-33.

  • *Taylor AR, *Chrachri A, *Wheeler GL, Goddard H and Brownlee C. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLOS Biology. 2011. 9(6):e1001085. (* denotes equal contribution).

  • Verret F, Taylor A, Wheeler G, Farnham G, Brownlee C. Calcium channels and their implications for evolution of calcium-based signalling in photosynthetic eukaryotes. New Phytologist. 2010. 187(1), 23-43.

  • Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C. Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiology. 2010. 27, 585-595.


  • Qudeimat E, Faltusz AM, Wheeler G, Lang D, Brownlee C, Reski R, Frank W. A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. PNAS. 2008. 105(49) 19554-19559.

  • Wheeler GL, Brownlee C. Ca2+ signalling in plants and green algae – changing channels. Trends Plant Sci.2008. 13(9):506-14

  • Wheeler GL, Miranda-Saavedra D, Barton GJ. Genome Analysis of the Unicellular Green Alga Chlamydomonas reinhardtii Indicates an Ancient Evolutionary Origin for Key Pattern Recognition and Cell-Signaling Protein Families. Genetics. 2008. 179(1):193-7.

  • Wheeler GL, Joint I, Brownlee C. Rapid spatiotemporal patterning of cytosolic Ca2+ underlies flagellar excision in Chlamydomonas reinhardtii. Plant J. 2008. 53(3):401-13.

  • Thompson SE, Callow JA, Callow ME, Wheeler GL, Taylor AR, Brownlee C. Membrane recycling and calcium dynamics during settlement and adhesion of zoospores of the green alga Ulva linza. Plant Cell Environ. 2007. 30(6):733-44.

  • Joint I, Tait K, Wheeler G. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed UlvaPhil Trans R Soc B. 2007. 362(1483):1223-33.

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem. 2006. 281(23):15662-70.

  • Bothwell JHF, Brownlee C, Hetherington AM, Ng CK, Wheeler GL, McAinsh MR. Biolistic delivery of Ca2+ dyes into plant and algal cells. Plant J. 2006. 46(2):327-35.

  • Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I. Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Env. 2006. 29(4):608-18.

  • Wheeler GL, Grant CM. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiaePhysiol. Plant. 2004 120(1):12-20.

  • Wheeler GL, Trotter EW, Dawes IW, Grant CM. Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. J Biol Chem. 2003 278(50):49920-8.

  • Wheeler GL, Quinn KA, Perrone G, Dawes IW, Grant CM. Glutathione regulates the expression of gamma-glutamylcysteine synthetase via the Met4 transcription factor. Mol Microbiol. 2002. 46(2):545-56.

  • Collinson EJ, Wheeler GL, Garrido EO, Avery AM, Avery SV, Grant CM. The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem 2002. 277(19):16712-7.

  • Gatzek S, Wheeler GL, Smirnoff N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. 2002. Plant J. 30(5):541-53.

  • Smirnoff N and Wheeler GL. Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 2000. 35(4):291-314

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N and Last RL. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. PNAS 1999. 96:4198-4203

  • Wheeler GL, Jones MA and Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature 1998. 393:365-369

Book chapters


Ca2+ elevations in Chlamydomonas flagella viewed by TIRF microscopy



Intraflagellar transport in Chlamydomonas during gliding motility



Cell division in a coccolithophore (Coccolithus braarudii)

Dr Glen Wheeler

The Marine Biological Association of the United Kingdom,

The Laboratory, Citadel Hill,

Plymouth, Devon,UK.



Telephone: 01752 426586