A group of international marine scientists has compiled the most comprehensive assessment of how ocean warming is affecting the mix of species in our oceans – and explained how some marine species manage to keep their cool. Prof Martin Edwards from the MBA along with other researchers from the UK, Japan, Australia, USA, Germany, Canada, South Africa and New Zealand analysed three million records of thousands of species from 200 ecological communities across the globe.


Reviewing data from 1985 – 2014, the team led by Prof Michael Burrows of the Scottish Association for Marine Science (SAMS) in Oban showed how subtle changes in the movement of species that prefer cold-water or warm-water, in response to rising temperatures, made a big impact on the global picture. The findings, published in the journal Nature Climate Change show how warm-water species increase and cold-water marine species become less successful as the global temperature rises. However, the study also suggests that some cold-water species, and fish in particular, will continue to thrive by seeking refuge in cooler, deeper water.


Prof Edwards said, “This truly global study looked at data from the North Atlantic, Western Europe, Newfoundland and the Labrador Sea, east coast USA, the Gulf of Mexico, and the North Pacific from California to Alaska. While the global warming trend was widely seen, the North Atlantic showed the largest rise in average temperature during the time period.”


This area of the North Atlantic is routinely monitored by one of the world’s largest and longest marine biological surveys known as the Continuous Plankton Recorder (CPR) Survey which provided some key observational data in the global study. Prof Edwards went on to say, “the changes observed have been driven by a seemingly small but ecologically significant rise in temperature of almost one degree Celsius in some parts of the ocean since 1985, a rapid change in just three decades. These changes are having huge implications for the abundance and distribution of plankton in our oceans.”


Prof Burrows added: “For the period from 1985 – 2014 we created the equivalent of an electoral poll in the ocean, showing swings between types of fish and plankton normally associated with either cold or warm habitats. As species increase in number and move into, or decline and leave, a particular ecological community, the make-up of that community will change in a predictable way. While this may not sound like a big change, it has a considerable impact on species that may already be on, or close to, their maximum temperature tolerance. A gradual temperature change like the one we are witnessing is not going to cause extinctions overnight but it is affecting the success of many species, not least zooplankton such as copepods, which are crucial to the ocean food web.”

For further information please contact: Professor Martin Edwards maed@mba.ac.uk +44 (0)1752 426480 or MBA Communications Coordinator, Guy Baker guba@mba.ac.uk +44 (0)7876 831267

Year

0 Comments
Nov 26, 2019 By MBA Comms