Cell biologists are becoming increasingly aware that cilia and flagella are important sensory organelles, which detect changes in the extracellular environment and convey these signals to the cell body. The biflagellate green alga, Chlamydomonas, is a model organism for the study of flagella function and has allowed researchers to link ciliary dysfunction to a range of human genetic disorders. We are using molecular, biochemical and cell physiological techniques to study signalling processes in Chlamydomonas flagella. We have developed techniques to image Ca2+ in both the cytosol and the flagella of Chlamydomonas and have recently demonstrated that intraflagellar Ca2+ elevations regulate the important process of intraflagellar transport (IFT) (Collingridge et al, 2013). This project aims to understand the mechanisms that generate Ca2+ signals in flagella and how they act to regulate the transport of flagellar proteins.
Funded by BBSRC